Effects of Different Salinity Levels and Temperature on Growth Performance of Pangas Catfish, Pangasius Hypopythalamus
Abstract
This study aimed to assess how salinity and temperature affect the growth productivity, survival rate, and feed conversion rate of Thai-Pangas (P. hypophthalmus) fingerlings. The fingerlings were raised in laboratory conditions for 63 days, subject to varying salinity levels of 0, 4, 7, 10, and 13 ppt, and temperatures of 24, 27, 30, 32, and 34 °C. The results showed that the fingerlings exhibited high mortality (100%) within six hours when exposed to 13 ppt salinity, while 62.5% mortality occurred at 13 ppt salinity. No deaths were observed in other treatment groups. At 30 and 32 °C with salinities of 0, 4, and 10 ppt, significantly higher specific growth rates were observed compared to 13 ppt salinity. There were no significant differences in the feed conversion rate and proximal composition among the treatment groups. The study concluded that Thai-Pangas fingerlings are suitable for salinities up to 10 ppt and water temperatures of 32 °C, with satisfactory growth rates. The species showed better adaptation to temperatures between 27 and 30 °C, while high temperatures of 34 °C and low temperatures of 24 °C were found to be stressful and unsuitable for thriving.
References
2. Ali, M. L., Haque, S. M., Borski, R. J. and Center, W. (2015).The culture potential of Pangasius catfish in brackish (Hyposaline) waters of the Greater Barishal regions in Southern Bangladesh. Production System Design and Best Management Alternatives, 69: 1-14.
3. Bœuf, G. and Payan, P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 130(4): 411-423.
4. Bongaarts, J. and Sinding, S. (2011). Population policy in transition in the developing world. Science, 333(6042): 574-576.
5. Boyd, C. E. and Tucker, C. S. (2012).Pond aquaculture water quality management.Springer Science and Business Media.
6. Buentello, J. A., Gatlin III, D. M. and Neill, W. H. (2000).Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictaluruspunctatus). Aquaculture, 182(3-4): 339-352.
7. Burel, C., Person L. R. J., Gaumet, F., Le Roux, A., Severe, A. and Boeuf, G. (1996).Effects of temperature on growth and metabolism in juvenile turbot. Journal of Fish Biology, 49(4): 678-692.
8. Carriquiriborde, P., Díaz, J., López, G. C., Ronco, A. E. and Somoza, G. M. (2009).Effects of cypermethrin chronic exposure and water temperature on survival, growth, sex differentiation, and gonadal developmental stages of Odontesthesbonariensis (Teleostei). Chemosphere, 76(3): 374-380.
9. Carvalho, C. S. and Fernandes, M. N. (2006).Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture, 251(1): 109-117.
10. Cochrane, K., De Young, C., Soto, D. and Bahri, T. (2009).Climate change implications for fisheries and aquaculture. FAO Fisheries and Aquaculture Technical Paper, 530: 180-212.
11. De Silva, S. S. and Phuong, N. T. (2011). Striped catfish farming in the Mekong Delta, Vietnam: a tumultuous path to a global success. Reviews in Aquaculture, 3(2): 45-73.
12. Do, T. T. H., Nguyen, T. K. H., Nguyen, T. E., Tang, M. K., Yasuaki, T. and Nguyen, T. P. (2021). Effects of temperature on growth performance, survival rate, digestive enzyme activities and physiological parameters of striped snakehead (Channastriata) at fry stage. Can Tho University Journal of Science, 13: 10-20.
13. Domiszewski, Z., Bienkiewicz, G. and Plust, D. (2011).Effects of different heat treatments on lipid quality of striped catfish (Pangasius. hypophthalmus). Polish Journal of Food Technology, 10(3): 359-373.
14. Doolgindachbaporn, S. (1995).Development of optimal rearing and culturing systems for climbing perch, Anabas testudineus (Bloch)(Perciformes, Anabantidae), 10: 556-578.
15. Evans, D.H. (2011). Osmoregulation in Fishes: An Introduction, in: Farrell, A.P. (Ed.), Encyclopedia of Fish Physiology: from Genome to Environment. Elsevier, 1348-1353.
16. FAO, (2012).The State of World Fisheries and Aquaculture.Food and Agriculture Organization of the United Nations.
17. FAO, (2014). The State of World Fisheries and Aquaculture: Opportunities and challenges. Food and Agriculture Organization of the United Nations, Rome.
18. FAO, (2018).The state of World Fisheries and Aquaculture.Food and Agriculture Oraganization of the United Nations, Rome, 223.
19. Ficke, A. D., Myrick, C. A. and Hansen, L. J. (2007). Potential impacts of global climate change on freshwater fisheries. Reviews in Fish Biology and Fisheries, 17(4): 581-613.
20. Fiess, J. C., Kunkel-Patterson, A., Mathias, L., Riley, L. G., Yancey, P. H., Hirano, T. and Grau, E. G. (2007).Effects of environmental salinity and temperature on osmoregulatory ability, organic osmolytes, and plasma hormone profiles in the Mozambique tilapia (Oreochromismossambicus). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 146(2): 252-264.
21. Forsberg, J. A., Dorsett, P. W. and Neill, W. H. (1996). Survival and growth of red drum Sciaenop socellatus in saline groundwaters of West Texas, USA. Journal of the World Aquaculture Society, 27(4): 462-474.
22. GlobeFish (2011).Pangasius market report - Feb 2011. Globe Fish Organization.
23. GlobeFish (2014).Pangasius market report - September 2014. Globe FishOrganization.
24. Goda, A. M., Srour, T. M., Mansour, A. T., Baromh, M. Z., Sallam, G. R. and Baromh, A. Z. (2019).Assessment of stressful ambient water salinity on growth, feed utilization and hematological indices of European sea bass, Dicentrarchuslabrax, juveniles. Aquaculture, Aquarium, Conservation and Legislation, 12(2): 553-563.
25. Graham, J. B. (2011). The biology, diversity, and natural history of air-breathing fishes: an introduction. Encyclopedia of Fish Physiology, 1850-1860.
26. Griffiths, D., Van Khanh, P. and Trong, T.Q. (2010).Cultured Aquatic Species Information Programme.P.hypophthalmus.Updated 14 January 2010 ed. FAO Fisheries and Aquaculture Department.
27. Guderley, H. (2004). Metabolic responses to low temperature in fish muscle. Biological Reviews, 79(2):409-427.
28. Ha, H. P., Nguyen, T. T. T., Poompuang, S. and Na-Nakorn, U. (2009). Microsatellites revealed no genetic differentiation between hatchery and contemporary wild populations of striped catfish, P. hypophthalmus (Sauvage 1878) in Vietnam. Aquaculture, 291(3-4): 154-160.
29. Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S. and Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576):2158-2162.
30. Hassanen, G. D. I., Salem, M., Younes, M. I. and Heba, E. A. E. (2014). Combined effects of water temperature and salinity on growth and feed utilization of juvenile red tilapia (Oreochromis niloticus and O. aureus). World Journal of Zoology, 9(1): 59-70.
31. Heltonika, B. (2014). Effect of salinity on hatching of tra fish(Pangasius hypohthalmus) eggs. Indonesian Swamps Aquaculture Journal, 2(1): 13-23.
32. Hien, T. T., Tu, T. L., Haga, Y. and Phu, T. M. (2021). Combined effects of elevated salinity and temperature on growth performance and feed utilization in hybrid red tilapia fingerlings (Oreochromismossambicusand O. niloticus). Aquaculture, Aquarium, Conservation and Legislation, 14(6): 3310-3321.
33. Hieu, D. Q., Hang, B. T. B., Huong, D. T. T., Kertaoui, N. E., Farnir, F., Phuong, N. T. and Kestemont, P. (2021). Salinity affects growth performance, physiology, immune responses and temperature resistance in striped catfish (P. hypophthalmus) during its early life stages. Fish Physiology and Biochemistry, 47(6): 1995-2013.
34. Imanpoor, M. R., Najafi, E. and Kabir, M. (2012).Effects of different salinity and temperatures on the growth, survival, haematocrit and blood biochemistry of Goldfish (Carassiusauratus). Aquaculture Research, 43(3): 332-338.
35. Imsland, A. K., Bjornsson, B. T., Gunnarsson, S., Foss, A. and Stefansson, S. O. (2007). Temperature and salinity effects on plasma insulin-like growth factor-I concentrations and growth in juvenile turbot (Scophthalmusmaximus). Aquaculture, 271(1-4): 546-552.
36. Imsland, A. K., Foss, A., Gunnarsson, S., Berntssen, M. H., FitzGerald, R., Bonga, S. W. and Stefansson, S. O. (2001).The interaction of temperature and salinity on growth and food conversion in juvenile turbot (Scophthalmusmaximus). Aquaculture, 198(3-4): 353-367.
37. Iqbal, K. J., Qureshi, N. A., Ashraf, M., Rehman, M. H. U., Khan, N., Javid, A. and Majeed, H. (2012).Effect of different salinity levels on growth and survival of Nile tilapia (Oreochromisniloticus). Journal of Animal and Plant Sciences, 22(4): 919-932.
38. Islam, M. A., Uddin, M. H., Uddin, M. J. and Shahjahan, M. (2019). Temperature changes influenced the growth performance and physiological functions of Thai pangasP. hypophthalmus. Aquaculture Reports, 13: 100-179.
39. Jackson, M., Ford-Lloyd, B. and Parry, M. (Eds.). (2013). Plant genetic resources and climate change (Vol. 4). Cabi.
40. Kemp, J. O. G. (2009). Effects of temperature and salinity on resting metabolism in two South African rock pool fish: the resident gobiidCaffrogobiuscaffer and the transient sparidDiplodussarguscapensis. African Zoology, 44(2): 151-158.
41. Kumar, A., Harikrishna, V., Reddy, A. K., Chadha, N. K. and Babitha, A. M. (2017). Salinity tolerance of P. hypophthalmus in inland saline water: effect on growth, survival and haematological parameters. Ecology, Environment and Conservation Journal, 23: 475-482.
42. Kumar, N., Krishnani, K. K., Brahmane, M. P., Gupta, S. K., Kumar, P. and Singh, N. P. (2018). Temperature induces lead toxicity in P. hypophthalmus: an acute test, antioxidative status and cellular metabolic stress. International Journal of Environmental Science and Technology, 15(1): 57-68.
43. Kwak, S. M., Myung, S. K., Lee, Y. J., Seo, H. G. and Korean Meta-analysis study ggroup. (2012). Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease: a meta-analysis of randomized, double-blind, placebo-controlled trials. Archives of Internal Medicine, 172(9): 686-694.
44. Kwok, K. W. H. and Leung, K. M. Y. (2005). Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): effects of temperature and salinity. Marine Pollution Bulletin, 51(8-12): 830-837.
45. Le Morvan, C. A. R. O. L. I. N. E., Troutaud, D. A. N. I. E. L. L. E. and Deschaux, P. I. E. R. R. E. (1998). Differential effects of temperature on specific and nonspecific immune defences in fish. The Journal of Experimental Biology, 201(2): 165-168.
46. Lefevre, S., Ha, N. T. K., Wang, T., Phuong, N. T. and Bayley, M. (2011). A telemetry study of swimming depth and oxygen level in a Pangasius pond in the Mekong Delta. Aquaculture, 315(3-4): 410-413.
47. Lefevre, S., Wang, T., Jensen, A., Cong, N. V., Huong, D. T. T., Phuong, N. T. and Bayley, M. (2014). Air‐breathing fishes in aquaculture. What can we learn from physiology? Journal of Fish Biology, 84(3): 705-731.
48. Likongwe, J. S., Stecko, T. D., Stauffer Jr, J. R. and Carline, R. F. (1996). Combined effects of water temperature and salinity on growth and feed utilization of juvenile Nile tilapia Oreochromisniloticus (Linneaus). Aquaculture, 146(1-2): 37-46.
49. Lin, Y. C. and Chen, J. C. (2003).Acute toxicity of nitrite on Litopenaeusvannamei (Boone) juveniles at different salinity levels. Aquaculture, 224(1-4): 193-201.
50. Magnussen, A. B., Imsland, A. K. and Foss, A. (2008). Interactive effects of different temperatures and salinities on growth, feed conversion efficiency, and blood physiology in juvenile spotted wolffish, Anarhichasminor. Journal of the World Aquaculture Society, 39(6): 804-811.
51. Mandal, S. C., Kadir, S. and Hossain, A. (2020).Effects of salinity on the growth, survival and proximate composition of pangas, P. hypophthalmus. Bangladesh Journal of Zoology, 48(1): 141-149.
52. Martınez-Palacios, C. A., Morte, J. C., Tello-Ballinas, J. A., Toledo-Cuevas, M. and Ross, L. G. (2004). The effects of saline environments on survival and growth of eggs and larvae of Chirostomaestor Jordan 1880 (Pisces: Atherinidae). Aquaculture, 238(1-4): 509-522.
53. McLarney, W. O. (1998). Freshwater aquaculture: a handbook for small scale fish culture in North America. Hartley and Marks Publishers.
54. Men, L. T., Thanh, V. C., Hirata, Y. and Yamasaki, S. (2005). Evaluation of the genetic diversities and the nutritional values of the Tra (P. hypophthalmus) and the Basa (Pangasiusbocourti) catfish cultivated in the Mekong river delta of Vietnam. Asian-Australasian Journal of Animal Sciences, 18(5): 671-676.
55. Meritha, W. W., Suprayudi, M. A. and Ekasari, J. (2018). The growth performance and resistance to salinity stress of striped catfish Pangasius sp. juvenile in biofloc system with different feeding rates. Indonesian Aquaculture Journal, 17(2): 113-119.
56. Metz, J. R., Van Den Burg, E. H., Bonga, S. E. W. and Flik, G. (2003). Regulation of branchial Na+/K+-ATPase in common carp Cyprinuscarpio L. acclimated to different temperatures. Journal of Experimental Biology, 206(13): 2273-2280.
57. Na-Nakorn, U. and Moeikum, T. (2009). Genetic diversity of domesticated stocks of striped catfish, P. hypophthalmus (Sauvage 1878), in Thailand: relevance to broodstock management regimes. Aquaculture, 297(1-4): 70-77.
58. Nguen, T. H. P. (2022). Effects of temperatures on growth performance, hematological parameters and plasma IGF-1 level of tra catfish (P. hypophthalmus). Hydrobiological Journal, 58(1): 56-67.
59. Nguyen, A. L., Dang, V. H., Bosma, R. H., Verreth, J. A., Leemans, R. and De Silva, S. S. (2014). Simulated impacts of climate change on current farming locations of striped catfish (P. hypophthalmus; Sauvage) in the Mekong Delta, Vietnam. Ambio, 43(8): 1059-1068.
60. Nguyen, P. T. H., Do, H. T. T., Mather, P. B. and Hurwood, D. A. (2014). Experimental assessment of the effects of sublethal salinities on growth performance and stress in cultured tra catfish (P. hypophthalmus). Fish Physiology and Biochemistry, 40(6): 1839-1848.
61. Nguyen, T. H. P. (2015). Effects of temperature and salinity on growth performance in cultured tra catfish (P. hypophthalmus) in Vietnam (Doctoral dissertation, Queensland University of Technology).
62. Nguyen, T. K. H., Nguyen, T. E., Nguyen, M. N., Yasuaki, T., Nguyen, T. P. and Do, T. T. H. (2021). Effects of salinity on growth performance, survival rate, digestive enzyme activities and physiological parameters of striped catfish (P. hypophthalmus) at larval stage. Can Tho University Journal of Science, 13: 1-9.
63. Nguyen, T. T. (2009). Patterns of use and exchange of genetic resources of the striped catfish P. hypophthalmus (Sauvage 1878). Reviews in Aquaculture, 1(3‐4): 224-231.
64. Pandit, N. P. and Nakamura, M. (2010).Effect of high temperature on survival, growth and feed conversion ratio of Nile tilapia, Oreochromisniloticus. Our Nature, 8(1): 219-224.
65. Partridge, G. J. and Jenkins, G. I. (2002).The effect of salinity on growth and survival of juvenile black bream (Acanthopagrusbutcheri). Aquaculture, 210(1-4): 219-230.
66. Perry, S. F. and Fryer, J. N. (1997). Proton pumps in the fish gill and kidney. Fish Physiology and Biochemistry, 17(1): 363-369.
67. Person-Le Ruyet, J., Skalli, A., Dulau, B., Le Bayon, N., Le Delliou, H. and Robin, J. H. (2004). Does dietary n-3 highly unsaturated fatty acids level influence the European sea bass (Dicentrachuslabrax) capacity to adapt to a high temperature?. Aquaculture, 242(1-4), 571-588.
68. Phan, L. T., Bui, T. M., Nguyen, T. T., Gooley, G. J., Ingram, B. A., Nguyen, H. V. and De Silva, S. S. (2009). Current status of farming practices of striped catfish, P. hypophthalmus in the Mekong Delta, Vietnam. Aquaculture, 296(3-4): 227-236.
69. Phuc, N. T. H., Mather, P. B. and Hurwood, D. A. (2017).Effects of sublethal salinity and temperature levels and their interaction on growth performance and hematological and hormonal levels in tra catfish (P. hypophthalmus). Aquaculture International, 25(3): 1057-1071.
70. Phuong, N.T., Oanh, D.T.H. (2010). Striped Catfish Aquaculture in Vietnam: A Decade of Unprecedented Development Success Stories in Asian Aquaculture, in: Silva, S.S., Davy, F.B. (Eds.). Springer Netherlands, 131-147.
71. Portner, H.-O.2011. Cellular Energy Utilization: Environmental Influences on Metabolism, in: Farrell, A.P. (Ed.), Encyclopedia Of Fish Physiology: From Genome To Environment. Academic Press, 1645-1651.
72. Rahman, M. M., Islam, M. S., Halder, G. C. and Tanaka, M. (2006). Cage culture of sutchi catfish, Pangasiussutchi (Fowler 1937): effects of stocking density on growth, survival, yield and farm profitability. Aquaculture Research, 37(1): 33-39.
73. Roche, H. and Boge, G. (1996). Fish blood parameters as a potential tool for identification of stress caused by environmental factors and chemical intoxication. Marine Environmental Research, 41(1): 27-43.
74. Ross, L.L. (2002). Environmental physiology and energetic. Fish and Fisheries Series 25: 89-128.
75. Rubio, V. C., Sanchez-Vazquez, F. J. and Madrid, J. A. (2005).Effects of salinity on food intake and macronutrient selection in European sea bass. Physiology andBehavior, 85(3): 333-339.
76. Sampaio, L. A., Wasielesky, W. and Miranda-Filho, K. C. (2002).Effect of salinity on acute toxicity of ammonia and nitrite. Bulletin of Environmental Contamination and Toxicology, 68: 668-674.
77. Sang, N.V., Klemetsdal, G., Odegard, J., Gjoen, H.M., (2012).Genetic parameters of economically important traits recorded at a given age in striped catfish (Pangasianodon hypophthalmus). Aquaculture, 344(349): 82-89.
78. Sardella, B. A., Cooper, J., Gonzalez, R. J. and Brauner, C. J. (2004). The effect of temperature on juvenile Mozambique tilapia hybrids (Oreochromismossambicus x O. urolepishornorum) exposed to full-strength and hypersaline seawater. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 137(4): 621-629.
79. Schulte, P. M., Healy, T. M. and Fangue, N. A. (2011). Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integrative and Comparative Biology, 51(5): 691-702.
80. Selong, J. H., McMahon, T. E., Zale, A. V. and Barrows, F. T. (2001).Effect of temperature on growth and survival of bull trout, with application of an improved method for determining thermal tolerance in fishes. Transactions of the American Fisheries Society, 130(6): 1026-1037.
81. Shah, S. A., Malik, A., Kalhoro, H., Kalhoro, I. B., Wadhar, G. M. and Maher, G. M. (2014).Growth performance of exotic catfish Pangas, P. hypophthalmus(Sauvage, 1878) at Fish Hatchery ChilyaThatta, Sindh, Pakistan. Sindh University Research Journal-SURJ (Science Series), 46(2): 555-578.
82. Shahjahan, M., Uddin, M., Bain, V. and Haque, M. (2018). Increased water temperature altered hemato-biochemical parameters and structure of peripheral erythrocytes in striped catfish P. hypophthalmus. Fish Physiology and Biochemistry, 44(5): 1309-1318.
83. Singh, A.K., Lal, B., (2008). Seasonal and circadian time-dependent dual action of GH on somatic growth and ovarian development in the Asian catfish, Clarias batrachus (Linn.): Role of temperature.General and Comparative Endocrinology, 159: 98-106.
84. Tadpitchayangkoon, P. and Yongsawatdigul, J. (2009).Comparative study of washing treatments and alkali extraction on gelation characteristics of striped catfish (P. hypophthalmus) muscle protein. Journal of Food Science, 74(3): 284-291.
85. Takei, Y. and Balment, R. J. (2009).The neuroendocrine regulation of fluid intake and fluid balance. Fish Physiology, 28: 365-419.
86. Talbot, C. (1993). Some aspects of the biology of feeding and growth in fish. Proceedings of the Nutrition Society, 52(3):403-416.
87. United Nations.(2013). World Population Prospects: 2012 Revision. United Nations Department of Economic and Social Affairs: New York, USA.
88. Usha, R. (2011). Effect of salinity changes on haematological parameters of the tiger shark P. hypophthalmus. Journal of Ecobiology, 29(4): 283
89. Van Ham, E. H., Berntssen, M. H., Imsland, A. K., Parpoura, A. C., Bonga, S. E. W. and Stefansson, S. O. (2003). The influence of temperature and ration on growth, feed conversion, body composition and nutrient retention of juvenile turbot (Scophthalmusmaximus). Aquaculture, 217(1-4): 547-558.
90. Van Sang, N., Klemetsdal, G., Odegård, J. and Gjoen, H. M. (2012). Genetic parameters of economically important traits recorded at a given age in striped catfish (P. hypophthalmus). Aquaculture, 344: 82-89.
91. Vidthayanon, C. and Hogan, Z. (2013).P. hypophthalmus.The IUCN red list of threatened species.Version 2014.3.
92. Wang, J. Q., Lui, H., Po, H. and Fan, L. (1997). Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinuscarpio) fingerlings. Aquaculture, 148(2-3): 115-124.
93. Wootton, R. (2011). Growth: Environmental Effects, in: Farr` ell, A.P. (Ed.), Encyclopedia of fish physiology: From genome to environment. Academic Press, pp: 1629-1635.
94. Wright, P.J., Tobin, D. (2011). Temperature effects on female maturation in a temperate marine fish. Journalof Experimental Marine Biology and Ecology, 403: 9-13.
95. Zarejabad, A. M., Sudagar, M., Pouralimotlagh, S. and Bastami, K. D. (2010).Effects of rearing temperature on hematological and biochemical parameters of great sturgeon (Huso Linnaeus) juvenile. Comparative Clinical Pathology, 19(4): 367-371.