Preparation, Characterization of New 2-Oxo Pyran Derivatives by AL2O3-OK Solid Base Catalyst and Biological Activity Evaluation
Abstract
This work included the synthesis of new derivatives of 2-Oxo pyran compounds from the reaction of chalcone with ethyl cyano acetate via a solid basic catalyst (prepared by the reaction of KNO3 with Al2O3 at (300-700) °C to obtain potassium oxide as a solid base catalyst)
Where the chalcone was prepared from the reaction of 5-bromoindanone with aromatic benzaldehyde substitutes, using physical methods and spectral analysis such as melting point, color, nuclear magnetic resonance spectroscopy 1H-NMR, 13C-NMR and FT-IR to ensure the accuracy and validity of the prepared compounds. The activity of the basophil was confirmed using scanning electron microscopy (SEM) and the biological activity was evaluated on two types of bacteria, Escherichia coli and Staphylococcus aureus.
References
2. Tashrifi, Z., Mohammadi-Khanaposhtani, M., Hamedifar, H., Larijani, B., Ansari, S., & Mahdavi, M. (2020). Synthesis and pharmacological properties of polysubstituted 2-amino-4H-pyran-3-carbonitrile derivatives. Molecular Diversity, 24(4), 1385-1431.
3. Jiang, C., He, B. B., Zhao, R. L., Xu, M. J., Houk, K. N., & Zhao, Y. L. (2021). Computational Exploration of How Enzyme XimE Converts Natural S-Epoxide to Pyran and R-Epoxide to Furan. ACS Catalysis, 11(13), 7928-7942.
4. Waghmare, A. S., Pandit, S. S., & Suryawanshi, D. M. (2018). DABCO catalyzed green and efficient synthesis of 2-Amino-4H-Pyrans and their biological evaluation as antimicrobial and anticancer agents. Combinatorial Chemistry & High Throughput Screening, 21(4), 254-261.
5. Chaouche, M., Demirtaş, İ., Koldaş, S., Tüfekçi, A. R., Fatih, G. Ü. L., Tevfik, Ö. Z. E. N., ... & Neslihan, B. O. R. A. (2021). Phytochemical study and antioxidant activities of the water-soluble aerial parts and isolated compounds of Thymus munbyanus subsp. ciliatus (Desf.) Greuter & Burdet. Turkish Journal of Pharmaceutical Sciences, 18(4), 430.
6. Elinson, M. N., Vereshchagin, A. N., Ryzhkova, Y. E., Karpenko, K. A., & Ushakov, I. E. (2021). Four component tandem Knoevenagel–Michael strategy for the assembly of arylaldehydes, N, N'-dimethylbarbituric acid, 4-hydroxy-6-methyl-2H-pyran-2-one and morpholine into unsymmetrical scaffold with three different heterocyclic rings. Mendeleev Communications, 31(5), 698-700.
7. El-Assaly, S., Ismail, A. E. H. A., Bary, H., & Abouelenein, M. (2021). Synthesis, molecular docking studies, and antimicrobial evaluation of pyrano [2, 3-c] pyrazole derivatives. Current Chemistry Letters, 10(3), 309-328.
8. Elinson, M. N., Vereshchagin, A. N., Ryzhkova, Y. E., Karpenko, K. A., Ushakov, I. E., Maslov, O. I., & Egorov, M. P. (2022). Four-component transformation of benzaldehydes, dimethylbarbituric acid, 4-hydroxy-6-methyl-2 H-pyran-2-one, and morpholine into the unsymmetrical ionic scaffold with three different heterocyclic rings. Russian Chemical Bulletin, 71(3), 464-473.
9. Abdallah, A. E., Mohareb, R. M., Helal, M. H., & Abd Elkader, M. M. (2023). Novel 5, 6, 7, 8-tetrahydrobenzo [b] pyran Derivatives: Synthesis and Anticancer Activity. Acta Chimica Slovenica, 261-273.
10. Alzahrani, A. Y. (2023). Design, synthesis, characterization, and antimicrobial evaluation of some new pyridine and chromene derivatives containing Lidocaine analogue. Journal of Saudi Chemical Society, 27(2), 101620.
11. Khandan, S., Yavari, I., & Azizian, J. (2023). A one-pot synthesis 3-alkoxycarbonyl-3, 4-dihydro-2 H-pyran-2-ones from vinylidene melderum’s acids, dialkyl acetylenedicarboxylates, and simple alcohols. Molecular Diversity, 27(1), 125-133.
12. Thomas, J. M. (2014). Heterogeneous catalysis and the challenges of powering the planet, securing chemicals for civilised life, and clean efficient utilization of renewable feedstocks. ChemSusChem, 7(7), 1801-1832..
13. Le Page, J. F., Cosyns, J., Courty, P., Freund, E., Franck, J. P., Jscquin, Y. J., ... & van Landeghem, H. (1987). Applied Heterogeneous Catalysis, Design, Manufacture. Use of Solid Catalyst, Technip, Paris.
14. Védrine, J. C. (2018). Metal oxides in heterogeneous catalysis. Elsevier.
15. Friend, C. M., & Xu, B. (2017). Heterogeneous catalysis: a central science for a sustainable future. Accounts of chemical research, 50(3), 517-521
16. Malkar, R. S., Jadhav, A. L., & Yadav, G. D. (2020). Innovative catalysis in Michael addition reactions for CX bond formation. Molecular Catalysis, 485, 110814.
17. Zhang, Z. X., Li, K., Ma, S. W., Cui, M. S., Lu, Q., & Yang, Y. P. (2019). Fast pyrolysis of biomass catalyzed by magnetic solid base catalyst in a hydrogen atmosphere for selective production of phenol. Industrial Crops and Products, 137, 495-500.
18. MacLeod, C. Evaluation of Heterogeneous Catalysts for Biodiesel Production. thesis submitted for the degree of Doctor of Philosophy (PhD) at Newcastle University, pp:23,(2008) .
19. Al-Joboury, W. M., Al-Badrany, K. A., & Asli, N. J. (2022, November). N-alkylation of substituted 2-amino benzothiazoles by 1, 4-bis (bromo methyl) benzene on mixed oxides at room temperature and study their biological activity. In AIP Conference Proceedings (Vol. 2394, No. 1, p. 040054). AIP Publishing LLC.
20. Li, Z. (2005). Novel solid base catalysts for Michael additions
21. Gawande, M. B., Deshpande, S. S., Satam, J. R., & Jayaram, R. V. (2007). A novel N-alkylation of amines by alkyl halides on mixed oxides at room temperature. Catalysis Communications, 8(3), 576-582.
22. Dalaf, A. H., Jumaa, F. H., & Jabbar, S. A. S. (2018). Synthesis and Characterization of some 2, 3- dihydroquinozoline and evaluation of their biological activity. Tikrit Journal of Pure Science, 23(8), 66-76. 30.
23. Yass, I. A., Aftan, M. M., Dalaf, A. H., & Jumaa, F. H. (Nov. 2020). Synthesis and Identification of New Derivatives of Bis-1,3-Oxazepene and 1,3-Diazepine and Assess the Biological and Laser Efficacy for Them. The Second International & The Fourth Scientific Conference of College of Science – Tikrit University. (P4): 77-87. 31.
24. Dalaf, A. H., & Jumaa, F. H. (2018). Synthesis, Characterization of some 1,3-Oxazepane -4,7-Dione by Traditional and Microwave routes method and evaluation of their biological activity. Al-utroha for Pure Science. (8): 93-108. 32.
25. Salwa, A. J., Ali, L. H., Adil, H. D., Hossam, S. A. (2020). Synthesis and Characterization of Azetidine and Oxazepine Compounds Using Ethyl-4-((4-Bromo Benzylidene) Amino) Benzoate as Precursor and Evalution of Their Biological Activity. Journal of Education and Scientific Studies, ISSN: 24134732. 16(5): 39-52. 33.
26. Abd, I. Q., Ibrahim, H. I., Jirjes, H. M., & Dalaf, A. H. (2020). Synthesis and Identification of new compounds have Antioxidant activity Beta-carotene, from Natural Auxin Phenyl Acetic Acid. Research Journal of Pharmacy and Technology, 13(1): 40-46. 34.
27. Gawande, M. B., Deshpande, S. S., Satam, J. R., & Jayaram, R. V. (2007). A novel N-alkylation of amines by alkyl halides on mixed oxides at room temperature. Catalysis Communications, 8(3), 576-582.
28. Ouakki, M., Galai, M., Aribou, Z., Benzekri, Z., Dahmani, K., Ech-chihbi, E., ... & Cherkaoui, M. (2022). Detailed experimental and computational explorations of pyran derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: Electrochemical/surface studies, DFT modeling, and MC simulation. Journal of Molecular Structure, 1261, 132784.
29. Gu, J., Xiao, P. L., Wang, J., Zhong, L., Nie, X. L., & Peng, D. Y. (2022). Synthesis, crystal structure, spectroscopic characterization and anti-fungal activity of Ethyl 2-Oxo-2H-chromene-3-carboxylateDerivatives. Journal of Molecular Structure, 1257, 132576..
30. Mishra, U. K., & Bal, C. (2022). Microwave‐assisted decarboxylation of 2 H‐Pyran‐3‐carboxylic acid derivatives under basic condition. Journal of Heterocyclic Chemistry, 59(12), 2258-2265.
31. Al-Joboury, W. M., Al-Badrany, K. A., & Asli, N. J. (2021). Synthesis of new azo dye compounds derived from 2-aminobenzothiazole and study their biological activity. Materials Today: Proceedings, 47, 5977-5982.
32. Dalaf, A. H., Jumaa, F. H., & Yass, I. A. (2022, November). Synthesis, characterization, biological evaluation, molecular docking, assess laser efficacy, thermal performance and optical stability study for new derivatives of bis-1, 3-oxazepene and 1, 3-diazepine. In AIP Conference Proceedings (Vol. 2394, No. 1, p. 040037). AIP Publishing LLC.